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Background: structured polynomial systems

Many application domains require the solution of
large-scale systems of polynomial equations.

Among others: robotics, power systems, chemical en-
gineering, cryptography, etc.
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Polynomial systems and graphs

A polynomial system defined by m equations in n variables:

fi (x0, . . . , xn−1) = 0, i = 1, . . . ,m

Construct a graph G (“primal graph”) with n nodes:

Nodes are variables {x0, . . . , xn−1}.
For each equation, add a clique connecting the variables appearing in
that equation

Example:

I = 〈x2
0x1x2 + 2x1 + 1, x2

1 + x2, x1 + x2, x2x3〉
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Questions

“Abstracted” the polynomial system to a (hyper)graph.

Can the graph structure help solve this system?

For instance, to optimize, or to compute Groebner bases?

Or, perhaps we can do something better?

Preserve graph (sparsity) structure?

Complexity aspects?
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(Hyper)Graphical modelling

Pervasive idea in many areas, in particular: numerical linear algebra,
graphical models, constraint satisfaction, database theory, . . .

Key notions: chordality and treewidth.

Many names: Arnborg, Beeri/Fagin/Maier/Yannakakis, Blair/Peyton,
Bodlaender, Courcelle, Dechter, Freuder, Lauritzen/Spiegelhalter, Pearl,
Robertson/Seymour, . . .

Remarkably (AFAIK) almost no work in computational algebraic geometry
exploits this structure.

Reasonably well-known in discrete (0/1) optimization, what happens in
the continuous side?
(e.g., Waki et al., Lasserre, Bienstock, Vandenberghe, Lavaei, etc)
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Chordality

Let G be a graph with vertices x0, . . . , xn−1.
A vertex ordering

x0 > x1 > · · · > xn−1

is a perfect elimination ordering if for all `,
the set

X` := {x`} ∪ {xm : xm is adjacent to x`, x` > xm}

is such that the restriction G |X`
is a clique.

A graph is chordal if it has a perfect elimination ordering.

(Equivalently, in numerical linear algebra:
Cholesky factorization has no “fill-in”)
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Chordality, treewidth, and a meta-theorem

A chordal completion of G is a chordal graph with the same vertex set as
G , and which contains all edges of G .

The treewidth of a graph is the clique number (minus one) of its smallest
chordal completion.

Informally, treewidth quantitatively measures how “tree-like” a graph is.

Meta-theorem:
NP-complete problems are “easy” on graphs of small treewidth.
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(Simple) example: stable set on trees

Given a graph, a stable (or independent) set is a subset of vertices, such
that no two are pairwise neighbors.

STABLE SET problem: Compute a stable set of maximum cardinality.

For general graphs, NP-complete.
On trees, linear-time solvable!

Fix a root, and solve this recursion starting from the leaves:

S(i) = max(
∑

j∈children(i)

S(j), 1 +
∑

j∈grandchildren(i)

S(j) ),

S(leaf) = 1,

where S(i) represents the size of the largest independent set of the
corresponding subtree.
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Bad news? (I)

Recall the subset sum problem, with data A = {a1, . . . , an} ⊂ Z.
Is there a subset of A that adds up to 0?

Letting si be the partial sums, we can write a polynomial system:

0 = s0

0 = (si − si−1)(si − si−1 − ai )

0 = sn

The graph associated with these equations is a path (treewidth=1)

s0 — s1 — s2 —· · ·— sn

But, subset sum is NP-complete... :(
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Bad news? (II)

For linear equations, “good” elimination preserves graph structure
(perfect!)

For polynomials, however, Groebner bases can destroy chordality.

Ex: Consider
I = 〈x0x2 − 1, x1x2 − 1〉,

whose associated graph is the path x0 — x2 — x1 .

Every Groebner basis must contain the polynomial x0 − x1, breaking the
sparsity structure.

Q: Are there alternative descriptions that “play nicely” with graphical
structure?
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How to resolve this (apparent) contradiction?

“Trees are good”
???⇐⇒ “Trees can be NP-hard”

Underlying hero/culprit: dynamic programming (DP), and more refined
cousins (nonserial DP, belief propagation, etc).

Key: “nice” graphical structure allows DP to work in principle. But, we
also need to control the complexity of the objects DP is propagating.
Without this, we’re doomed!

[Ubiquitous theme: “complicated” value functions in optimal control,
“message complexity” in statistical inference, . . . ]
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How to get around this?

Need to impose conditions on the geometry!

In the algebraic setting, a natural condition:
degree of projections onto clique subspaces.

Consider the full solution set
(an algebraic variety).

Require the projections onto the
subspaces spanned by the maximal
cliques to have bounded degree.

For discrete domains (e.g., 0/1 problems), always satisfied.

Holds in other cases, e.g., low-rank matrices (determinantal varieties).
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Two approaches

Chordal elimination and Groebner bases (arXiv:1411:1745)

New chordal elimination algorithm, to exploit graphical structure
Conditions under which chordal elimination succeeds
For a certain class, complexity is linear in number of variables!
(exponential in treewidth)
Implementation and experimental results

Chordal networks (arXiv:1604.02618)

New representation/decomposition for polynomial systems
Efficient algorithms to compute them. Can use them for root counting,
dimension, radical ideal membership, etc.
Links to BDDs (binary decision diagrams) and extensions
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Example 1: Coloring a cycle

Let Cn = (V ,E ) be the cycle graph and consider
the ideal I given by the equations

x3
i − 1 = 0, i ∈ V

x2
i + xixj + x2

j = 0, ij ∈ E

These equations encode the proper 3-colorings of the graph. Note that
coloring the cycle graph is very easy!

However, a Gröbner basis is not so simple: one of its 13 elements is

x0x2x4x6 + x0x2x4x7 + x0x2x4x8 + x0x2x5x6 + x0x2x5x7 + x0x2x5x8 + x0x2x6x8 + x0x2x7x8 + x0x2x
2
8 + x0x3x4x6 + x0x3x4x7

+x0x3x4x8 + x0x3x5x6 + x0x3x5x7 + x0x3x5x8 + x0x3x6x8 + x0x3x7x8 + x0x3x
2
8 + x0x4x6x8 + x0x4x7x8 + x0x4x

2
8 + x0x5x6x8

+x0x5x7x8 + x0x5x
2
8 + x0x6x

2
8 + x0x7x

2
8 + x0 + x1x2x4x6 + x1x2x4x7 + x1x2x4x8 + x1x2x5x6 + x1x2x5x7 + x1x2x5x8

+x1x2x6x8 + x1x2x7x8 + x1x2x
2
8 + x1x3x4x6 + x1x3x4x7 + x1x3x4x8 + x1x3x5x6 + x1x3x5x7 + x1x3x5x8 + x1x3x6x8 + x1x3x7x8

+x1x3x
2
8 + x1x4x6x8 + x1x4x7x8 + x1x4x

2
8 + x1x5x6x8 + x1x5x7x8 + x1x5x

2
8 + x1x6x

2
8 + x1x7x

2
8 + x1 + x2x4x6x8 + x2x4x7x8

+x2x4x
2
8 + x2x5x6x8 + x2x5x7x8 + x2x5x

2
8 + x2x6x

2
8 + x2x7x

2
8 + x2 + x3x4x6x8 + x3x4x7x8 + x3x4x

2
8 + x3x5x6x8 + x3x5x7x8

+x3x5x
2
8 + x3x6x

2
8 + x3x7x

2
8 + x3 + x4x6x

2
8 + x4x7x

2
8 + x4 + x5x6x

2
8 + x5x7x

2
8 + x5 + x6 + x7 + x8
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Example 1: Coloring a cycle

There is a nicer representation, that
respects its graphical structure.
The solution set can be decomposed
into triangular sets:

V(I ) =
⋃
T

V(T )

where the union is over all maximal
directed paths in the figure.
The number of triangular sets is 21,
which is the 8-th Fibonacci number.

x2
0 + x0x8 + x2

8 x0 + x1 + x8

x1 − x8 x2
1 + x1x8 + x2

8x1 + x2 + x8

x2
2 + x2x8 + x2

8 x2 + x3 + x8 x2 − x8

x3 − x8 x2
3 + x3x8 + x2

8x3 + x4 + x8

x2
4 + x4x8 + x2

8 x4 + x5 + x8 x4 − x8

x5 − x8 x2
5 + x5x8 + x2

8x5 + x6 + x8

x6 + x7 + x8 x6 − x8

x2
7 + x7x8 + x2

8

x3
8 − 1

0

1

2

3

4

5

6

7

8
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Chordal networks

A new representation of structured polynomial systems!

What do they look like?

“Enlarged” elimination tree, with polynomial sets as nodes.
Efficient encoding of components in paths/subtrees.

How can you compute them?

A nice algorithm to compute chordal networks.
Remarkably, many polynomial systems admit “small” chordal networks,
even though the number of components may be exponentially large.

What are they good for?

Can be effectively used to solve feasibility, counting, dimension,
elimination, radical membership, . . .
Linear time algorithms (exponential in treewidth)
Implementation and experimental results.
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Elimination tree of a chordal graph

The elimination tree of a graph G is the
following directed spanning tree:

For each ` there is an arc from x` towards
the largest xp that is adjacent to x` and
p > `.

Note that the elimination tree is rooted at
xn−1.
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Chordal networks (definition)

A G -chordal network is a directed graph N , whose nodes are polynomial
sets in K[X ], such that:

Graded: Each node F is given a rank(F ) ∈ {0, . . . , n − 1}, s.t.
F ⊂ K[Xrank(F )].

Tree-like: For any arc (F`,Fp) we have that xp is the parent of x` in
the elimination tree of G , where ` = rank(F`), p = rank(Fp).

A chordal network is triangular if each node consists of a single polynomial
f , and either f = 0 or its largest variable is xrank(f ).
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Chordal networks (Example)

g(a, b, c) := a2 + b2 + c2 + ab + bc + ca

x3
0 + x2

0x7 + x0x
2
7 + x3

7 g(x0, x6, x7)

x3
1 + x2

1x9 + x1x
2
9 + x3

9 g(x1, x4, x9)

x3
2 + x2

2x5 + x2x
2
5 + x3

5 g(x2, x3, x5)

x3 − x5 g(x3, x7, x8)x3 + x5 + x7 + x8

x4 − x9 g(x4, x8, x9)x4 + x5 + x8 + x9

g(x5, x8, x9) x5 + x7 + x8 + x9 x5 − x9x5 − x7 x5 − x9

x6 − x7 g(x6, x8, x9) x6 + x7 + x8 + x9

x7 − x9 g(x7, x8, x9)

x3
8 + x2

8x9 + x8x
2
9 + x3

9

x4
9 − 1

0

1

2

3

4

5

6

7

8

9
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Computing chordal networks (Example)

I = 〈x2 − x3, x1 − x2, x
2
1 − x1, x0x2 − x2, x

3
0 − x0〉

The output of the algorithm will be

x3
0 − x0 x0 − 1

x1 − x2

x2 x2 − 1

x3 x3 − 1

0

1

2

3

This represents the decomposition of I into the triangular sets

(x3, x2, x1 − x2, x
3
0 − x0),

(x3, x2 − 1, x1 − x2, x0 − 1),

(x3 − 1, x2 − 1, x1 − x2, x0 − 1).
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Computing chordal networks (Example)
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2
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0

tria−−→ x3
0 − x0, x2 x0 − 1, x2 − 1

x1 − x2, x
2
2 − x2

x2
2 − x2, x2x

2
3 − x3

0

elim−−→ x3
0 − x0 x0 − 1

x1 − x2, x
2
2 − x2

x2
2 − x2, x2x
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3 − x3, x2 x2
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0
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0 − x0 x0 − 1
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3 − x3, x2 x2

2 − x2, x2x
2
3 − x3, x2 − 1

0

tria−−→

x3
0 − x0 x0 − 1

x1 − x2

x2, x3 x2 − 1, x3 x2 − 1, x3 − 1

0
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0 − x0 x0 − 1

x1 − x2

x2 x2 − 1 x2 − 1

x3 x3 x3 − 1
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x3 x3 − 1

0

1

2

3
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Chordal networks in computational algebra

Given a triangular chordal network N of a polynomial system, the
following problems can be solved in linear time:

Compute the cardinality of V(I ).

Compute the dimension of V(I )

Describe the top dimensional component of V(I ).

We also developed efficient algorithms to

Solve the radical ideal membership problem (h ∈
√
I?)

Compute the equidimensional components of the variety.

Cifuentes, Parrilo (MIT) Graph structure in polynomial systems LCCC 2017 22 / 26



Links to BDDs

Very interesting connections with binary decision diagrams (BDDs).

A clever representation of Boolean
functions/sets, usually much more
compact than naive alternatives

Enabler of very significant practical
advances in (discrete) formal
verification and model checking

“One of the only really fundamental
data structures that came out in the
last twenty-five years” (D. Knuth)

For the special case of monomial ideals, chordal networks are equivalent to
(reduced, ordered) BDDs. But in general, more powerful!
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Implementation and examples

Implemented in Sage, using Singular and PolyBoRi (for F2).
Upcoming package for Macaulay2.

Graph colorings (counting q-colorings)

Cryptography (“baby” AES, Cid et al.)

Sensor Network localization

Discretization of polynomial equations

Reachability in vector addition systems

Algebraic statistics
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Example: Vector addition systems

Given a set of vectors B ⊂ Zn, construct a graph with vertex set Nn in
which u, v ∈ Nn are adjacent if u − v ∈ ±B.

Ex: Determine whether fn ∈ In, where

fn := x0x
2
1x

3
2 · · · xnn−1 − xn0 x

n−1
1 · · · xn−1,

In := {xixi+3 − xi+1xi+2 : 0 ≤ i < n},

and where the indices are taken modulo n.

We compare our radical membership test with Singular (Gröbner bases)
and Epsilon (triangular decompositions).

n 5 10 15 20 25 30 35 40 45 50 55

ChordalNet 0.7 3.0 8.5 14.3 21.8 29.8 37.7 48.2 62.3 70.6 84.8
Singular 0.0 0.0 0.2 17.9 1036.2 - - - - - -
Epsilon 0.1 0.2 0.4 2.0 54.4 160.1 5141.9 17510.1 - - -
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Summary

(Hyper)graphical structure may simplify optimization/solving

Under assumptions (treewidth + algebraic structure), tractable!

New data structures: chordal networks

Yields practical, competitive, implementable algorithms

Ongoing and future work: other polynomial solving approaches (e.g.,
homotopies, full numerical algebraic geometry...)

If you want to know more:

D. Cifuentes, P.A. Parrilo, Exploiting chordal structure in polynomial ideals: a Groebner
basis approach. SIAM J. of Discrete Mathematics, 30(3), 1534–1570, 2016.
arXiv:1411.1745.

D. Cifuentes, P.A. Parrilo, An efficient tree decomposition method for permanents and
mixed discriminants, Linear Algebra and Appl., 493:45–81, 2016. arXiv:1507.03046.

D. Cifuentes, P.A. Parrilo, Chordal networks of polynomial ideals. SIAM Journal on
Applied Algebra and Geometry, 1(1), 73–110, 2017. arXiv:1604.02618.

Thanks for your attention!
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