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Plan of the talk:

— Nexus of ideas:
Mass Transport < Schrddinger bridges < Stochastic control
with a bit on LQG, Riccati, etc.

— Discrete-space counterpart:

Markov chains and networks

— Non-commutative counterpart:

Quantum flows & non-commutative geometry



Density flows
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Optimal Mass Transport (OMT)

CONFIDENTIAL

USSR Leonid Vitul'yevich KANTOROVICH

Head, Problems Laboralory of
Economic-Mathematical Methods
and Operations Research,
Institute of Management of the
Nafional Economy

An internationally recognized cre-
ative genius in the fields of mathemar-
ics and the application of electronic
computers to economic affairs, Acade-
mician Leonid Kantorovich (pro-
nounced kahntuhROHvich) has
worked at the Institute of Manage-
ment of the National Economy since
18971 He has been involved in ad-
vanced mathematical research since L
the age of 15; in 1839 he invented
linear programming, one of the mest significant contributions to economic
management in the twentieth century. Kantorovich has speat most of his
adult life bartling to win acceptance for his revolutionary concept from Soviet
acudemic and cconomic bureaucracies; the value of linear programming to
Soviel economic’ practices was not really recognized by his country's
authorities until 1965, when Kantotovich was awarded a Lenin Prize for his
work International recognition came in October 1975, when the mathemati-
cian was awarded the Nobel Prize for Economics jointly with T. C
Koopmans, a Dutch-born Ameri ist who disc d the same
concept independently a few years after Kantorovich.

In addition 1o his mathematical research, Kantorovich has been directly
involved in developing improved designs for high-speed digital computers, an
activity apparently motivated by the Soviet Union's need for improved
computers in solving large economic planning problems.

The Institute of Management of the National Economy

The Institute of Management of the National Economy was established
to train high-level economic and industrial administrators in modern methods
of management, production organization and the use of economic-
mathematical methods and computers in planning. When the institute
opened in early 1971, Premier Aleksey Kosygin and Party Secretary Andrey
Kirilenko attended the ceremonies, thus suggesting the importance that the
Soviet Government and Party attach to the application of modern

I_eo n id K a n tOI’OVi C h 1 976 management techniques to Soviet industrial administration and economic

planning

Work in early 1940's, Nobel 1975 s Frtog

o — - B COMFIDENTLAL CR 77-10705

CIA file on -Kantorovich
(wikipedia)




Monge's formulation

Le mémoire sur les déblais et les remblais
Gaspard Monge 1781

inf | flo - a;;||2du(w>

where T#u = v



Kantorovich’'s formulation

inf // |z — yl|? dr(z,y)
m€Il(po,p1) ’

where TI(u,v) are “couplings’:
Jyy m(dz, dy) = po(x)dx = dp(x)

Jz m(dz, dy) = p1(y)dy = dv(y).




B&B's fluid dynamic formulation

Benamou and Brenier (2000):

1
inf/ / o(, £)|12p(x, t)dtdz
R™ JO

B—It) +V-(vp) =0
p(x,0) = po(x), p(y,1) = p1(y)

McCann, Gangbo, Otto, Villani, ...



Stochastic control formulation

1
. 2
inf E, {/O o (, 8)] dt}

z(t) = v(x,t)

x(0) ~ po(z)dz
xz(1) ~ p1(y)dy



OMT as a control problem — derivation

2 _ 2
T — Y mf / x|[“dt,

Koy = {x € C | x(0) = z,x(1) = y}.

Inf attained at constant speed geodesic x*(t) = (1 — t)x + ty



OMT as a control problem — Dirac marginals

Also, Inf = any probabilistic average in Xzy

1
lz — y||® = inf Ep, {/O IIX(t)IIZdt} ,

Pyy € D(8,8y) : prob. measures on C! with delta marginals



OMT as a control problem — general marginals

1
inf / |z — y||2dn(z,y) = inf Ep / 1%(8)[|2dt b .
well(pg,p1) /R XR™ ’ PeD(pg,p1) 0

= OMT ~ stochastic control problem

with atypical boundary constraints

1
inf E {/ ||v||2dt}
v 0

&(t) = v(x(t),t), as., z(0)~ podz, x(1)~ p1dy.



Schrodinger’s Bridges
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Schrodinger’s Bridge Problem (SBP)

— Cloud of N independent Brownian particles (IN large)
— empirical distr. pg(x)dx and p1(y)dy att =0 and t = 1, resp.

— po and p3 not compatible with transition mechanism

1
p1(y) # /0 p(to, z, t1, y)po(x)de,

where
|z — y|?
2(t — s)

p(s,y,t,x) = [27(t — )] 72 exp [— ] , s<t

Particles have been transported in an unlikely way

Schrodinger (1931): Of the many unlikely ways in which this could

have happened, which one is the most likely?



LLarge deviations formulation of SBP

over Q € D(pg, p1) distributions on paths with marginals p's
H(-,-): relative entropy
Follmer 1988: This is a problem of large deviations of the empirical

distribution on path space connected through Sanov's theorem to

a maximum entropy problem.



Relative entropy w.r.t. Wiener measure
dX = vdt + dB

Girsanov:

dQ 1 [t
Eg [logml = Eq [2 i ||fv||2ds]

IS @ quadratic costl!!!



SBP as a stochastic control problem

1
inf / / lv(@, 1)1 2p(a, t)dtde,
R™ JO

(psv)

op 1

E‘I'V'(’UP) _EAP

p(x,0) = po(z), p(y,1) = p1(y).

Blaquiere, Dai Pra, ...

compare with OMT:
11
inf/ / “ v (a, 8|2 p(x, t)dtda
(pﬂj) R» JO 2

dp
T4 Vv. =0
9¢ T (vp)

p(x,0) = po(x), p(y,1) = pi(y)



Fluid-dynamic formulation of SBP

(time-symmetric)

1 1
e [ [||v<w,t>||2+||—v10gp<w,t>||2 p(x, t)dtda,
(p,v) JR™ JO 2

op
—— 4+ V. — 0,
97 T (vp)

p(0,z) = po(z), p(l,y) = p1(y)-

||%V log p(x, t)||? : Fisher information, Nelson’s osmotic power

Chen-Georgiou-Pavon, On the relation between optimal transport and Schrodinger

bridges: A stochastic control viewpoint, J. Opt. Theory Appl., 2015

Mikami 2004, Mikami-T hieullen 2006,2008, Léonard 2012



Erwin Schrodinger's insight on SBP

the density factors into

p(z,t) = p(z,t)p(x, t)

where ¢ and ¢ solve (Schrodinger’s system):
p(x,t) = /p(t,w, Ly)e(y,1)dy, ¢(z,0)p(x,0) = po(x)

B(x,t) = / (0,9, t,2)(y, 0)dy, o(z, 1)@z, 1) = p1().

compare with W = p

Existence and uniqueness for Schrodinger’'s system:
Fortet 1940, Beurling 1960, Jamison 1974/75, Follmer 1988.

~ Sinkhorn iteration & Quantum version: Georgiou-Pavon 2015




SBP schematic
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SBP schematic
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SBP schematic
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Schrodinger system

M —%—f(t, z) = 3Ap(t, )
0.2 1 A
TS e §A(P(t9 33)

3—f(t7 T) =
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Existence & uniqueness (Sinkhorn scaling)

0
_3—f(t7 T) = lAQD(ta )

A/2 o
3—95(757 T) = lA‘FA’(ta )

v

P
o) 1
—A/2 ¢(0,2)p(0, ) = po(x)

w(1,z)p(1, ) = p1(x)

Vi
\

€ 6
&

iteration is contractive in the Hilbert metric!

M (p,
dg(p,q) = log (2, 9)

m(p, q)
M(p,q) := inf{A|[p < Aq}

m(p,q) := sup{A| g < p}



OMT as limit to SBP: numerics in general

OMT interpolation:
Marginal distributions

pt+ V. .pv=20

pt +V - pv =€eAp, varying €



Applications: Image interpolation

Interpolation of 2D images to a 3D model:




L QG - covariance control

T
min E {/ ||u(t)||2dt},
u 0
S.t.

dX = AXdt+ Budt + BdW

X(0) ~N(0,%g), X(T)~N(0,%7) < these are the p's

Beghi (1996), Grigoriadis- Skelton (1997)

Brockett (2007, 2012), Vladimirov-Petersen (2010, 2015)



Bridges - LQG - covariance control in general

T
min E {/ ||u(t)||2dt},
u 0
S.t.

dX = AXdt + Budt + BidW
X(0) ~ N(Oa ¥0), X(T)~ N(Oa 31)

connection with SBP = ¢(t, ) = exp(—||a:||é(t)_1) & Riccati’s

Chen-Georgiou-Pavon (TAC 2016)



SBP Riccati’s

— nonlinearly coupled Riccati equations = Schrodinger system

II = —A'TI —TIA+ IIBB'II
H = —A’'H—HA — HBB'H
+(II+ H) (BB’ — B1B}) (11 + H).
351 = II(0) + H(0)
>t = I(T) + H(T).



stationary SBP

When can X be a stationary state-covariance for

dz(t) = (A — BK)z(t)dt + Bidw(t)?

i.e., when is X = Exx’/, for suitable choice of K7

— not all X can be realized by state feedback



stationary SBP

When can X be a stationary state-covariance for

dz(t) = (A — BK)z(t)dt + Bidw(t)?

This is so iff

A» +3A’+ BB} B

rank B 0

| = rani[3 ).

— Chen-Georgiou-Pavon, Optimal steering..., Part II IEEE TAC, May 2016
— Georgiou, Structure of state covariances... TAC 2002

— recent work with Mihailo Jovanovic etal. on inverse problems, etc., 2016, 2017



stationary SBP

Assuming

AYX +YA'+ BB, B 0 B
rank T B+ 11 Olzrank[B 0],

find K so that
foru = —Kx and de = (A — BK)xdt + B;dw,

we have:

¥ = Exx’ and Jpower () := E{||u||?} is minimal

Via semidefinite programming:
— Chen-Georgiou-Pavon, Optimal steering..., Part Il IEEE TAC, May 2016.



Application: Cooling

Efficient steering from initial condition pg to p; at finite time

— Efficient stationary state of stochastic oscillators to desired p;
— thermodynamic systems, controlling collective response
— magnetization distribution in NMR spectroscopy,..



Cooling (cont’d)

Nyquist-Johnson noise driven oscillator

Ldi(t) = we(t)dt

RCdvc(t) = —wve(t)dt — Rip(t)dt + u(t)dt + dw(t)

N

N

Voltage ve
N o

S EN

0 1
0.5

Current i1, 5 0 Time t




Cooling & keeping it cool!

Inertial particles with stochastic excitation
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Application: OMT with dynamics via SBP

10 10+

T -10 O Time t x1 -10 O Time ¢
Schrodinger bridge with e = 9 Schrodinger bridge with € = 0.01
10 10
5 5

T~
~—~—— B
20 g0 =S
\
5 5
-10 -10
10 1 10 1
0 0.5 0 0.5
T 10 O Timet x1 10 O Time ¢t

Schrodinger bridge with e = 4 Optimal transport with prior



Discrete space: SBP and OMT on graph

Chen-G-Pavon-Tannenbaum, Robust transport over networks
TAC to appear in March



Flow on Graphs - transportation

Graph:

nodes X = {1, 2, 3, 4}
edges £ = {(1,2), (1,4), ...}

paths: (1,4,2), (1,4,3,2),... 1
transport cost ¢+ — 3: U;;

Markov chain

transition mechanism Q;; Prob(i — j)
portion of mass passing from z to 3.

p(t,x) Prob(X(t) = x)
“mass’” at time t sitting at node x

Po(T0)Quzoz, * * * Qzy_rzn Prob(X(0) = xo X(1) =, --- X(N) = zn
portion of mass traveling along xgxq -++ N



Schrodinger bridges on graphs

initial & final distributions: pg and pn
transition probabilities Q;; (prior)
that may not be consistent with the marginals, i.e.,

pN(wN) 7£ Z pO(wO)QwOlew1w2 cc QwN_la:N

LoyL1geessLN_1

Determine
I)Opt = argmin{H(Pa Q) | o < ]D(po’ pN)}

H (P, Q) relative entropy/KL divergence
— Choice of prior influences transport properties!

Ruelle-Bowen transition probabilites = “equalize” usage of all alternative paths
= dispersive transportation, robustness

— Computations via iterative scaling (Sinkhorn-like)



Trading cost vs. robustness

cost Uj; in traversing edge (2, 7):

N-1
U(m07 L1y 9:BN) — § : Umtmt—i—l
t=0

cost of transportation:

U(P) ‘= Z P(wﬂawla”' awN)U(wOawla"' 7a7N)
{(zo - zn)}

minimize ‘free energy”

F(P) := U(P) — TS(P)

=— Y Plog(e’V)+T) Plog(P) = T H(P|e Y/T)
{paths}

“temperature” T': tradeoff between U and S
i.e., tradeoff between cost & ‘“dispersiveness/robustness”



Application: transport scheduling

Move a unit mass
from node 1 to node 9
in three steps:

(1—2—-7-09)
Available paths (1—-3—-—8-—09)
(1—4—8—09)

Solution p(t,x): equal usage of the three options.



Matrix-valued OMT & SBP

our goal
extend the fluid dynamics framework to

— Hermitian matrices
— matrix-valued distributions

eigenvectors of
matrix-OMT

L [—
R
v'/\\—‘ p7 paa—

I.e., formulate for matrices...
matrix-OMT E -

1
inf / / o(t, ) |[o(t, @)||? dt da power spectral
space J0

op 4+ V.- (pv) =0
ot pu) =

p(0,-) = po, p(1,-) = p1



Quantum mechanics

Starting point: Lindblad equation

Hermitian > 0 (trace 1): density matrices

p = _[iHa p]
N

1 1
+ > (LgpLy — 5PLiLr — S LikLyp),
k—1

compare with

pt = —V - (pv)



Some calculus

for ordinary functions:

f(x) : g(x) — f(z)g(x)
Oz : g(x) — Ozg(x)

0z, f(2)] : g(®) = O f(x)g9(x) — f(2)029(x) = (0 f(x))g(x)

For matrices:
L1 X — X1

8LiX = [Li,X]: [LiX—XLi] and VL : X — :
LnX — XLy




and more calculus!

V1, satisfies
Vi(XY)=(VrX)Y + X(VLY)
divergence:
Y; N
VE:SN—)H, Y = : '_)ZLkYk_YkLk'
YN k

i.e., using (X,Y) = S0 tr(X;Yy)

<VLX7 Y> — <X7 VEY>



Back to Lindblad’'s equation!

Schrodinger’s equation: p + V;FHp =0



Matrix continuity equation in general

p+Vi(pow) =0

choices of non-commutative “momentum”

(pov) =
%(pv + vp) ("anti-commutator’)

Olpsvpl_sds (Kubo-Mori)

p1/2451/2



Matrix OMT (... and SB)

1
min tr(pv*v)dt
pv”/() (p ) ’

1
p= 5VE(pv + vp),
p(0) = po, p(1) = p1,

v: vector of matrices

viv = chvzl VUL

L: “non-commutative coordinates” (in place of 1, x9, ...



Mmatrix-OMT geometry, gradient flows, and more

Quantum:
Lindblad’s equation = gradient flow of the von Neumann entropy

Yongxin Chen, TTG & Allen Tannenbaum

“Matrix OMT: a Quantum Mechanical approach,” 2016

Eric Carlen & Jan Maas

“Gradient flow and entropic inequalities...,” 2016

Markus Mittnenzweig & Alexander Mielke

“An entropic gradient structure for Lindblad...,” 2016.

Yongxin Chen, W. Gangbo, TTG & Allen Tannenbaum

“On the matrix Monge-Kantorovich”



Gradient flow of Entropy

dS(p(t) _
dt ;
= —tr((Vylog p)*/ pSvpl~3ds),
0
= greatest ascent direction v = —V log p.

non-commutative analog of: 9zp = p 9z (log p)):

1
VLP:/O p*(Vlogp)p'*ds

Gradient flow:

1
p==Vi [ p'(Vilogp)p'~ds = —ViVip=Arp,

Linear heat equation (now Lindblad) just as in the scalar casel



Mmatrix-OMT geometry, gradient flows, and more

Quantum:

Lindblad’s equation = gradient flow of the von Neumann entropy

Medical imaging (DTI imaging):

matricial geodesics

Time series (matrix-spectrograms):

non-stationary processes

arXiv 2016: |
eigenvectors of

Chen-G-Tannenbaum matrix-OMT

Chen-Gangbo-G-Tannenbaum e oMT = —

also Carlen-Maas, Mittnenzweig-Mielke EEED il



Concluding remarks

Control problem:

steering flow between specified marginals

Modeling/interpolation problem:

reconciling flow with the known prior

Metrics, metrics, metrics:

for interpolation, smoothing, etc.

Applications:

— time-series analysis, spectral flows,...(original motivation)

— control of collective motion of particles, agents,..

— transportation of resources with end-point specs

— tradeoffs between cost and robustness in transport problems

— thermodynamics, quantum



Thank you for your attention

Yongxin Chen

. Allen Tannenbaum
Michele Pavon Wilfrid Gangbo



