LCCC - Learning and Adaptation for Sensorimotor Control, October 24-26, Lund University, Sweden

Measuring Motion Complexity and Its Applications to Learning of Motion Skills

Hanyang University, Seoul, Korea October 24, 2018 II Hong Suh

Contents

1. What motion will be more complex?

2. What motion skill will be better learned first?

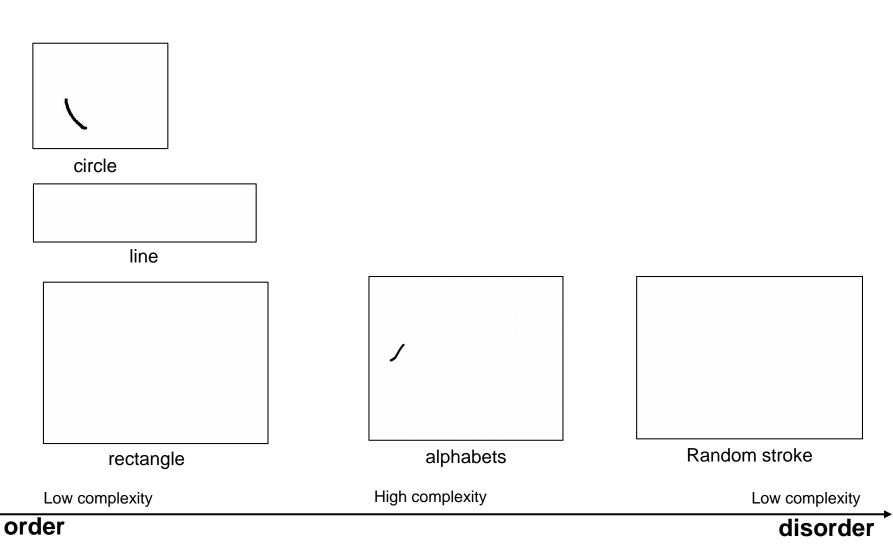
3. What and where to attend to learn from demonstrations?

1. What motion will be more complex?

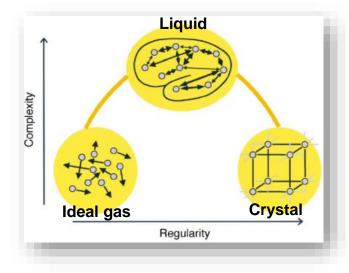
2. What motion skill will be better learned first?

3. What and where to attend to learn from demonstrations?

Do you think what motion is complex?



Neural Complexity Measure (1/2)



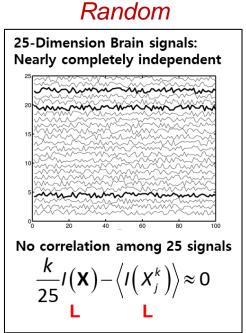
Neural Complexity (G. Tononi, Science 1998)

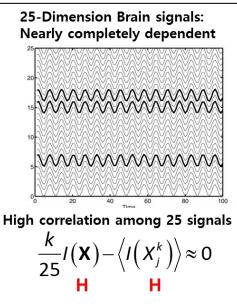
$$C_{N}(\mathbf{X}) = \sum_{k=1}^{n} \left[\frac{k}{n} I(\mathbf{X}) - \left\langle I(\mathbf{X}_{j}^{k}) \right\rangle \right]$$

- I(X): integration (a measure of dependency among elements in X)
- X: a whole system
- X_j^k : a subsystem including k elements
- $< X_j >$: ensemble average over j

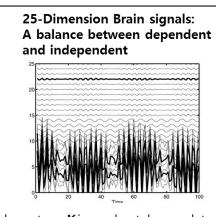
$$I(\mathbf{X}) = \sum_{i=1}^{n} H(x_i) - H(\mathbf{X})$$

Regular



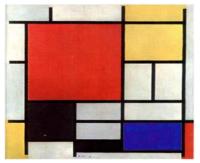


Random + Regular



The whole system **X** is moderately correlated, Some subsystems are **less** correlated (i.e. a *subsystem with signal 5,14,23*) Some subsystems are **highly** correlated, (i.e. a *subsystem with signal 20,21,22*) **5**

Neural Complexity Measure (2/2)



Mondrian Low Randomness

Simple !

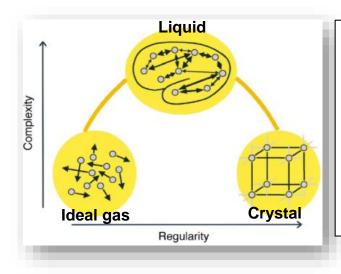
Pollock

High Randomness

Simple !

Bosch

High Randomness Complex !



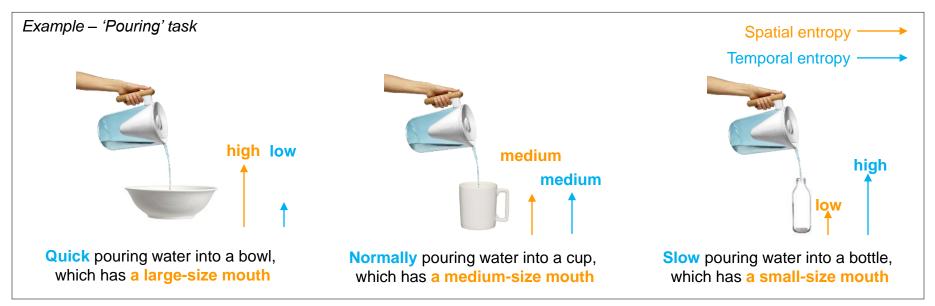
[Objective]

Calculating Motion Complexity

[Problem]

[Neural Complexity] →Intractable computation complexity (ensemble average of all possible subsystems) * in time-varying motion trajectories

<u>Motion Complexity</u> and Motion Significance



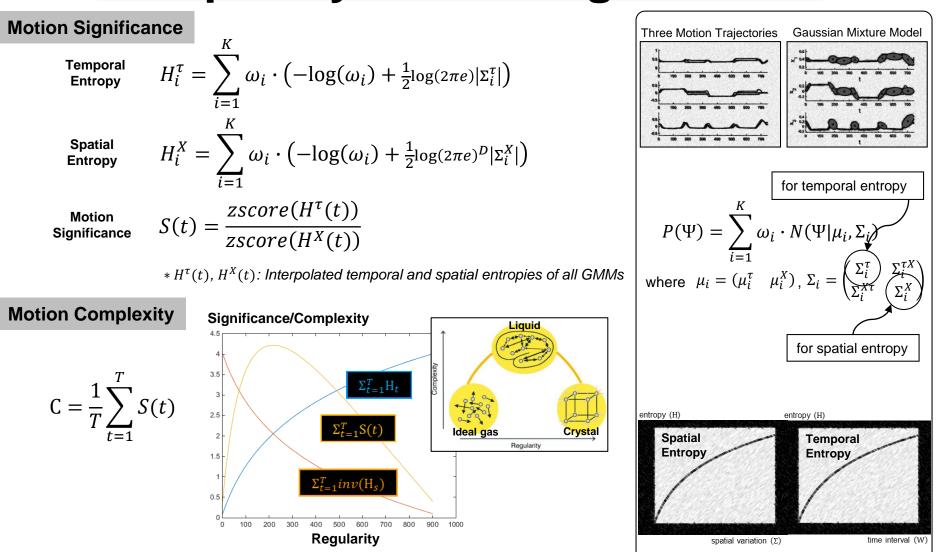
- Definitions -

Motion significance indicates the relative significance of each motion frame to accomplish the goal of a task at every time index of human demonstrations. *Motion complexity* indicates how complex a whole set of human demonstrations is to learn.

- How to measure -

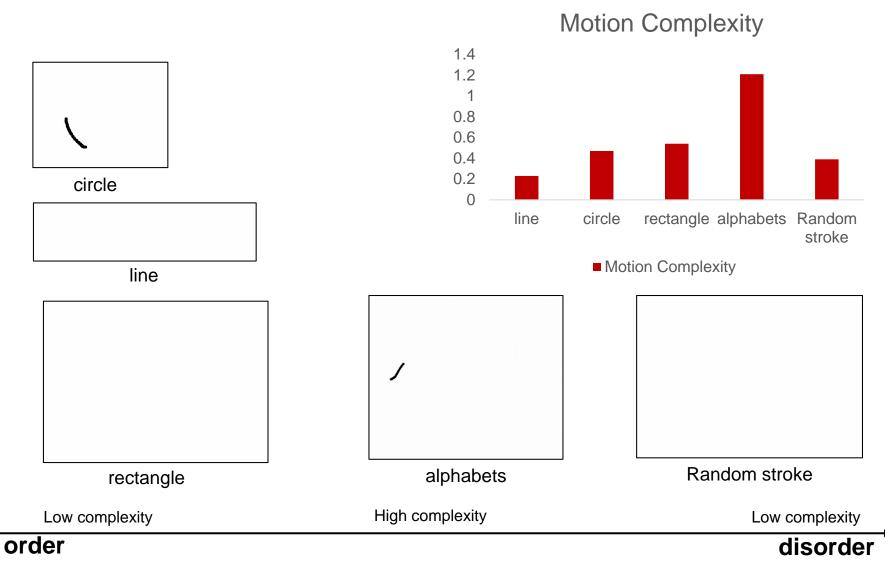
Motion significance is measured by considering both spatial entropy and temporal entropy of a motion frame, based on the analysis of Gaussian mixtures. *Motion complexity* is defined by measuring the averaged amount of motion significance involved in an entire set of human demonstrations.

ST-GMM based Motion Complexity/Motion Significance

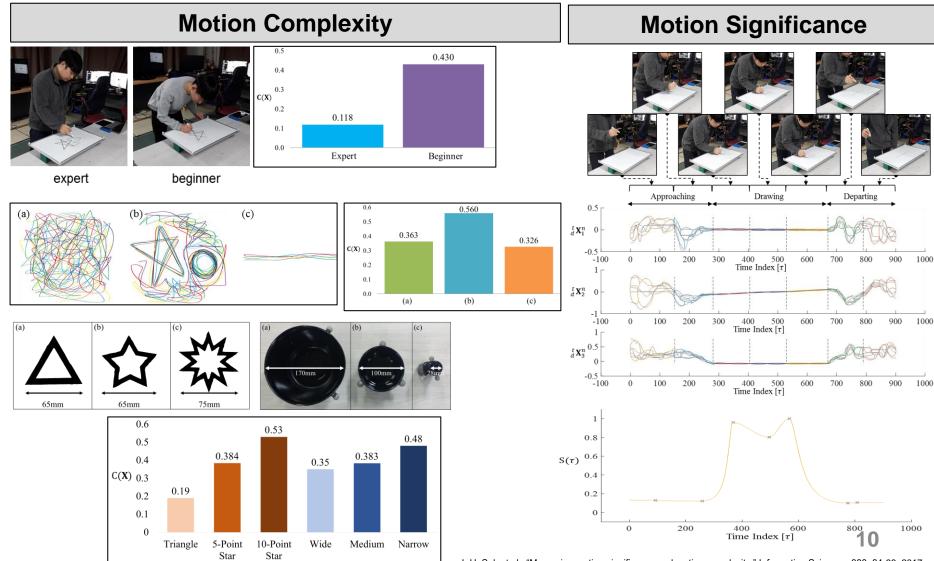


Reference Paper: II Hong Suh, Sang Hyong Lee, Nam Jun Cho, Woo Young Kwon, Measuring Motion Significance and Motion Complexity, Journal of Information Science, Vol388-389, May 2017

Do you think what motion is complex?



What motion will be more complex and significant?



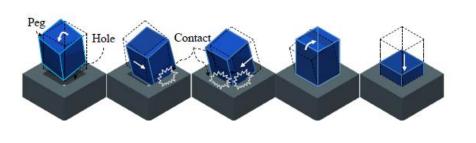
I. H. Suh et al., "Measuring motion significance and motion complexity," Information Sciences, 388, 84-98, 2017.

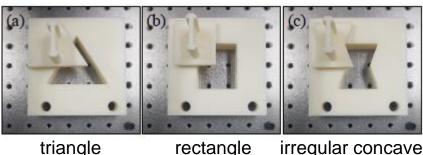
1. What motion will be more complex?

2. What motion skill will be better learned first?

3. What and where to attend to learn from demonstrations?

What motion skill will be better learned first in fitting task?





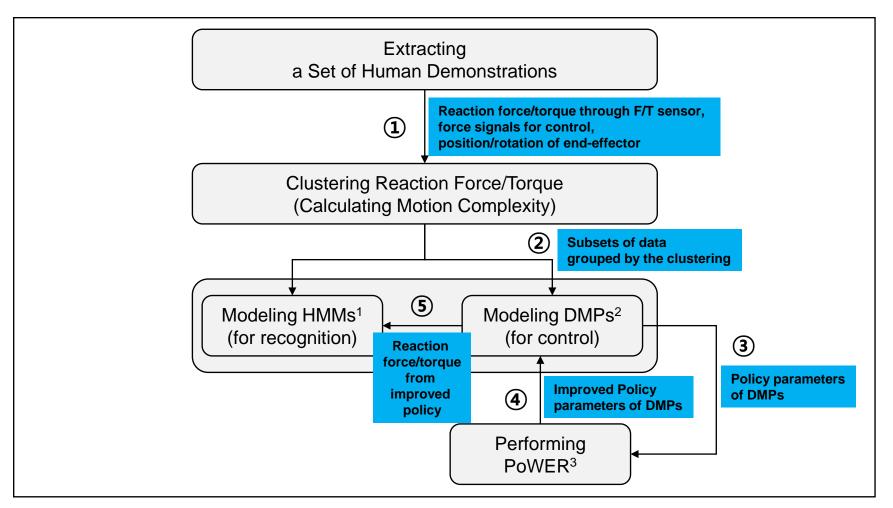
irregular concave hexagon

Objective: When human demonstrates how to fit a shape, the robot has to learn fitting other two shapes by using pre-demonstrated motion as well as RL.

- Q1) What fitting motion skill is more complex among triangle-, rectangle-, and hexagon-shaped fitting??
- Q2) For effective learning and effective learning transfer,

Complex one needs to be learned first? Or simpler one needs to be learned first?

Overview of Learning Process



¹HMM(Hidden Markov Model): to model reaction force/torque according to the directions of inserting pegs

²DMP(Dynamic Movement Primitive): to model control signals

³PoWER(Policy Learning by Weighting Exploration with the Returns): to improve policy parameters through RL 13

DMP and PoWER for RL

Representation of Motor Skills

Dynamic Movement Primitives

$$\dot{v} = K(x_g - x) + Dv + (x_g - x_0)\zeta,$$

 $\tau \dot{x} = v$

$$\zeta(s) = \frac{\omega_i \psi_i(s) s}{\sum_{i=1}^L \psi_i(s)},$$

Reward Function for RL

$$r(t) = \exp \left(\begin{array}{c} -\alpha(|\bar{r}_x^f - r_x^f(t)| + |\bar{r}_y^f - r_y^f(t)|) + |\bar{r}_z^f - r_z^f(t)|) \\ -\beta(|\bar{r}_x^m - r_x^m(t)| + |\bar{r}_y^m - r_y^m(t)| + |\bar{r}_z^m - r_z^m(t)|) \\ -\gamma(|\bar{P}_z - P_z(t)|) \end{array} \right),$$

Representation of Motor Skills

Extension of Policy Learning by Weighting Exploration with the Returns (PoWER) to Optimize and Transfer Motor Skills

Input: initial policy parameters Ω_0 (Here, $a = \Omega^T \Psi(x)$ and T is the original length of initial policy)

Repeat

Sample: Using an initial target x_g in Equation (5), Generate rollout (x) using action (i.e. DMP)

 $a = (\Omega + \varepsilon_t)^T \Psi(x, t) \text{ with exploration } [\varepsilon_t]_{ij} \sim N(0, \sigma_{ij}^2) \text{ as stochastic policy and collect all } (t, x_t, a_t, x_{t+1}, \varepsilon_t, r_{t+1}) \text{ for } t = \{1, 2, ..., \tilde{T} + 1\},$

where $\tilde{T} = \operatorname{argmax}_t r(t)$ and $x_g = \begin{cases} a(\tilde{T}), & \text{if } r_t > r_{\max} \\ a(T^*), & \text{if } r_t < r_{\max} \end{cases}$

Here, the value r_{\max} indicates the highest reward in all rollouts, and the target $a(T^*)$ is the action in the rollout of the value r_{\max} . Estimate: Use unbiased estimate of the value function

$$\widehat{Q}^{\pi}(x,a,t) = \sum_{\tilde{t}}^{\tilde{T}} r(x_{\tilde{t}},a_{\tilde{t}},x_{\tilde{t}+1},\tilde{t}).$$

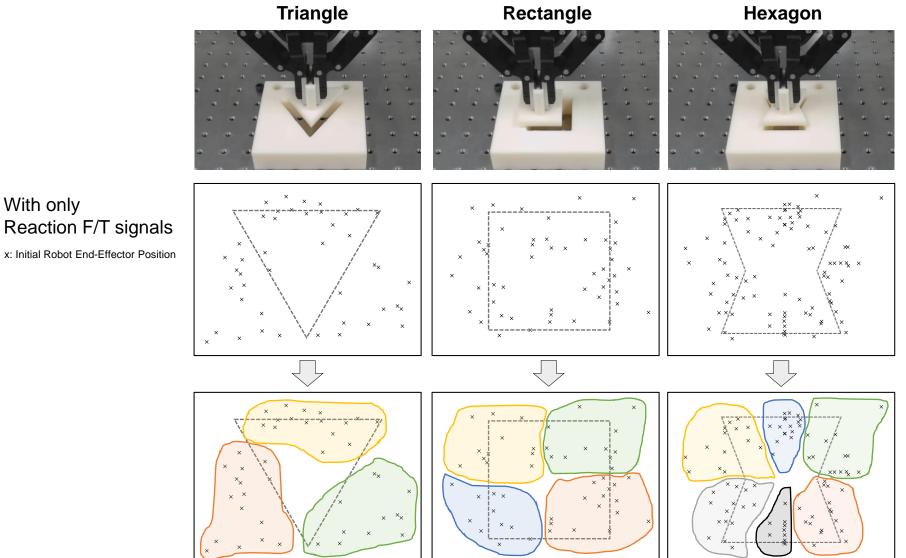
Reweight: rollouts, discard low-reward rollouts.

Update policy using

 $\Omega_{k+1} = \Omega_k + \left< \sum_{t=1}^{\tilde{T}} \varepsilon_t Q^{\pi}(x, a, t) \right> / \left< \sum_{t=1}^{\tilde{T}} Q^{\pi}(x, a, t) \right>$

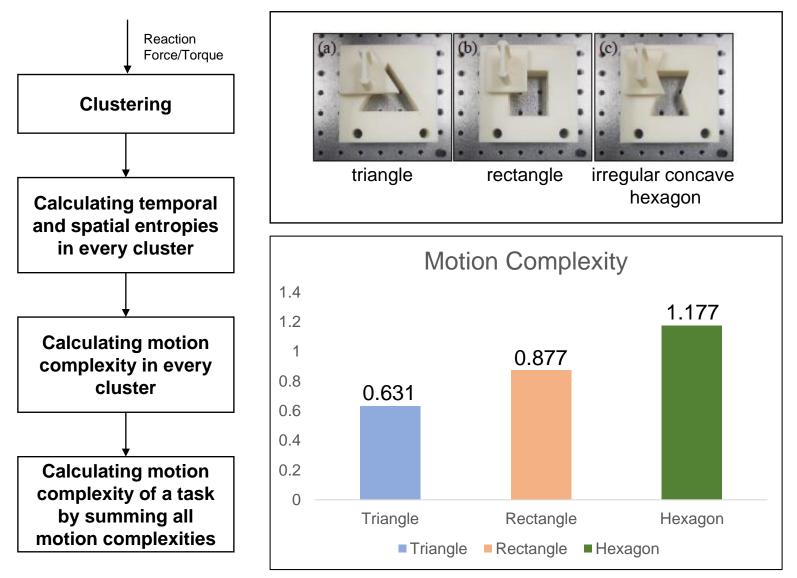
Until convergence $\Omega_{k+1} \approx \Omega_k$

Clustering Reaction F/T Signals in Fitting Task



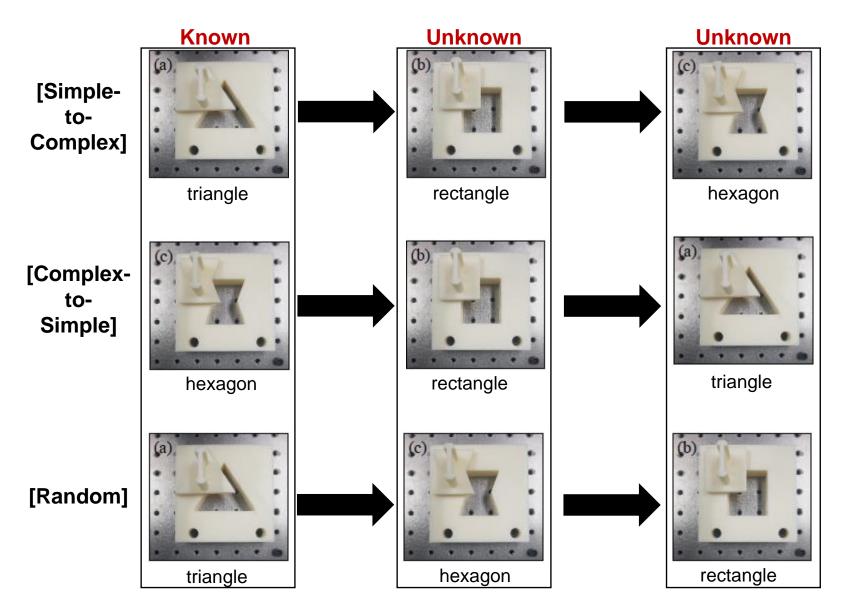
x: Initial Robot End-Effector Position

Motion Complexity in Fitting Tasks



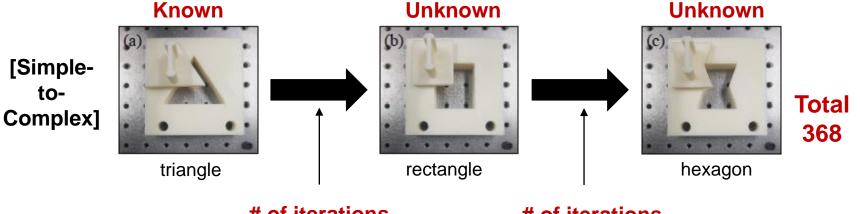
* Motion complexity calculated using reaction force/torque signals

<u>Three Sequences of Task Transfer</u> <u>through RL (1/6)</u>



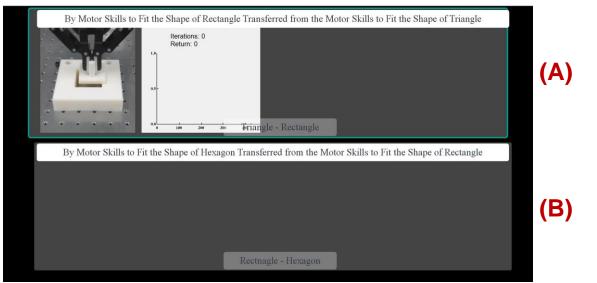
17

<u>Three Sequences of Task Transfer</u> <u>through RL (2/6)</u>



of iterations 190 (A) # of iterations 178 (B)

Thr [Simple-to-Complex] Order (i.e., Triangle - Rectangle - Irregular Concave Hexagon)



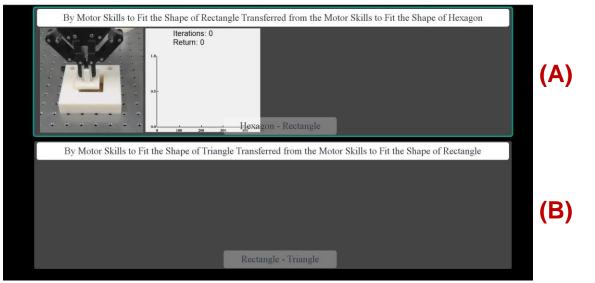
<u>Three Sequences of Task Transfer</u> <u>through RL (3/6)</u>



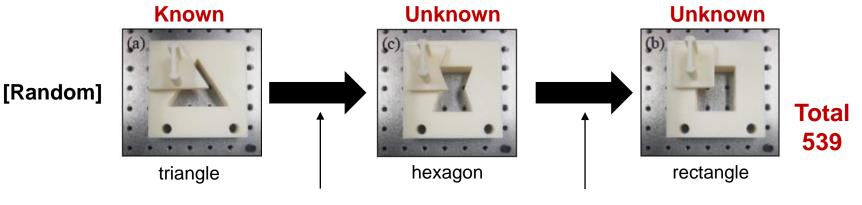
136 (A)

of iterations 101 (B)

Thr [Complex-to-Simple] Order (i.e., Irregular Concave Hexagon - Rectangle - Triangle)

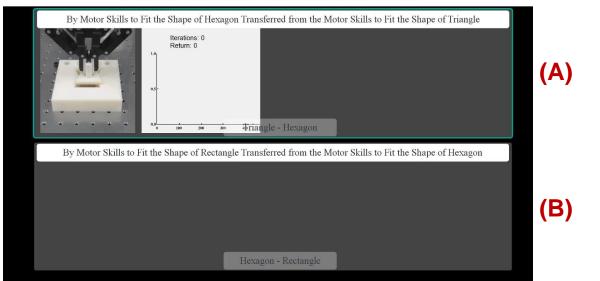


<u>Three Sequences of Task Transfer</u> <u>through RL (4/6)</u>

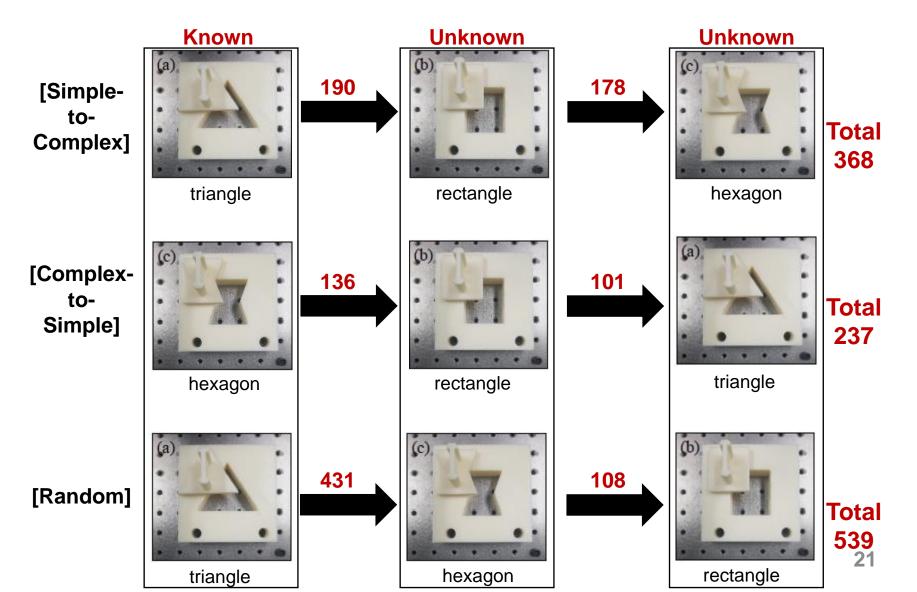


of iterations 431 (A) # of iterations 108 (B)

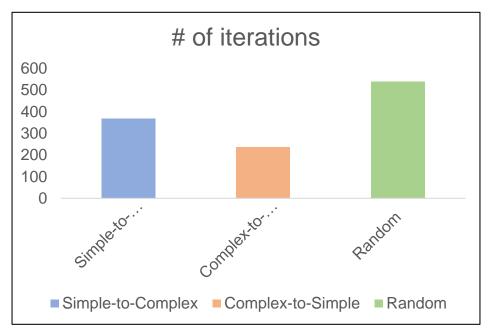
Thr [Random] Order (i.e., Triangle - Irregular Concave Hexagon - Rectangle)



<u>Three Sequences of Task Transfer</u> <u>through RL (5/6)</u>



<u>Three Sequences of Task Transfer</u> <u>through RL (6/6)</u>



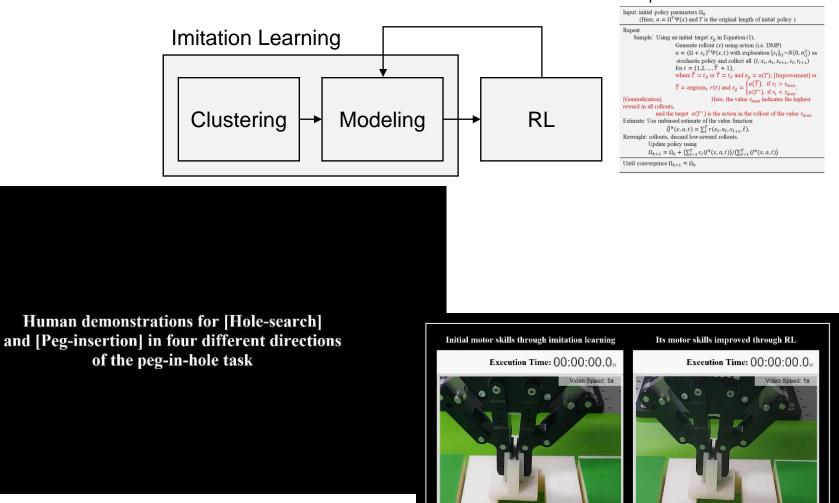
• When human can provide demonstrations:

Transfer task skills through the sequence of [Complex-to-Simple].

• When human cannot provide demonstrations:

Transfer task skills through the sequence of [Simple-to-Complex].

RL Considering Task Execution Time in Fitting Task Policy Learning by Weighting Exploration with the Returns



1. What motion will be more complex?

2. What motion skill will be better learned first?

3. What and where to attend to learn from demonstrations?

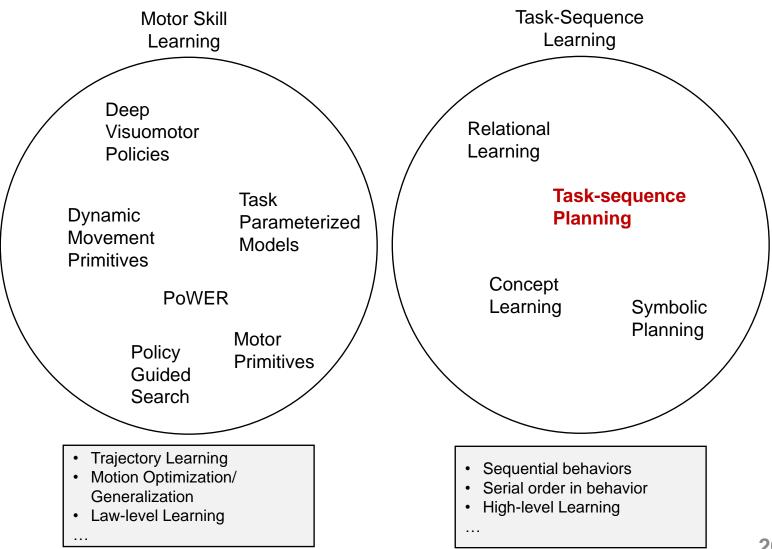
Where to Attend? What to Attend?

[00:00:45]

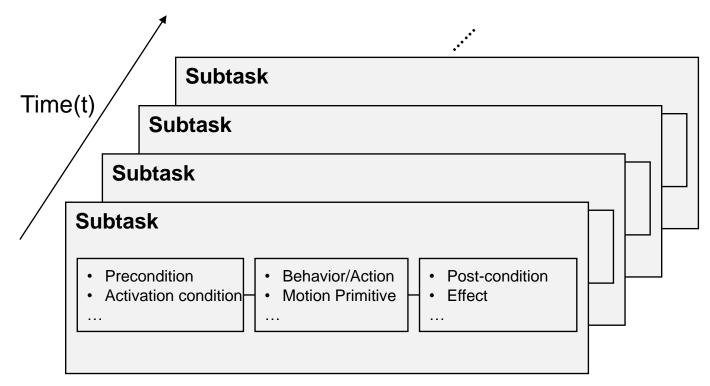
This ape should be able to find and learn attentive and significant intentions(joint relations) in the human demonstration.

How to find this? and By what measure?

Two Paradigms of Existing PbD Approaches

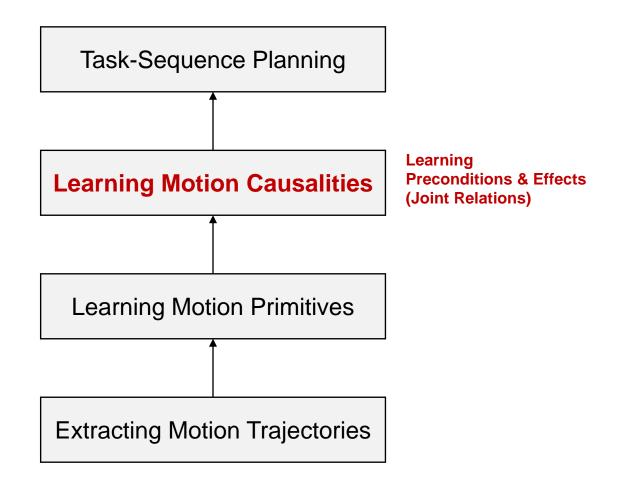


Task-sequence Learning : Learning Preconditions&Effects

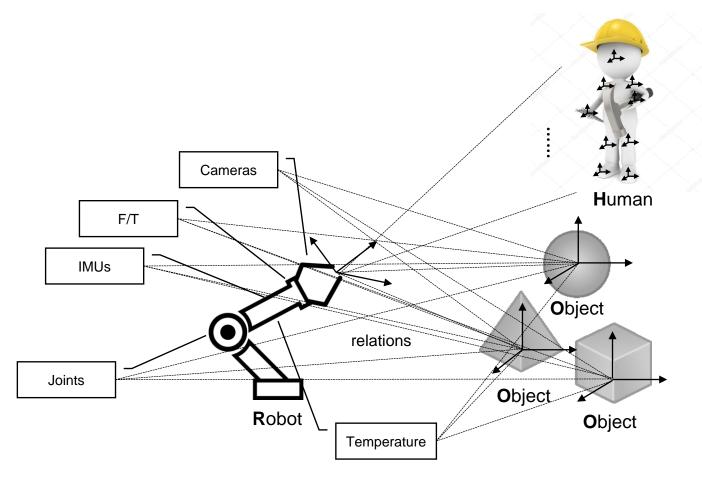


Task-Sequence Learning/Planning

<u>Conceptual Process</u> for Task-Sequence Planning in PbD

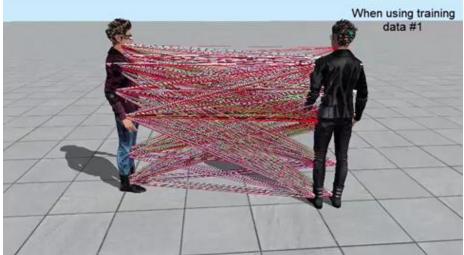


Joint Motion Significance: To Find Significant Joint Relations

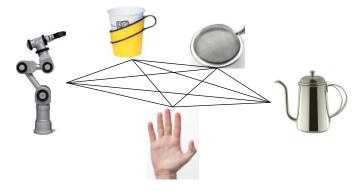


To find significant joint relations from tons of joint relations

How to Find Significant Joint Relations

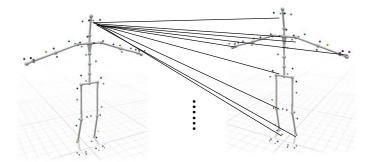


(3x3x3x3x3)x2 =486 joint relations (3D positions and 3D rotations per object)



3~9 significant joint relations

19x19x6 = **2,166 joint relations** (19 joints x 6dimensions per human)

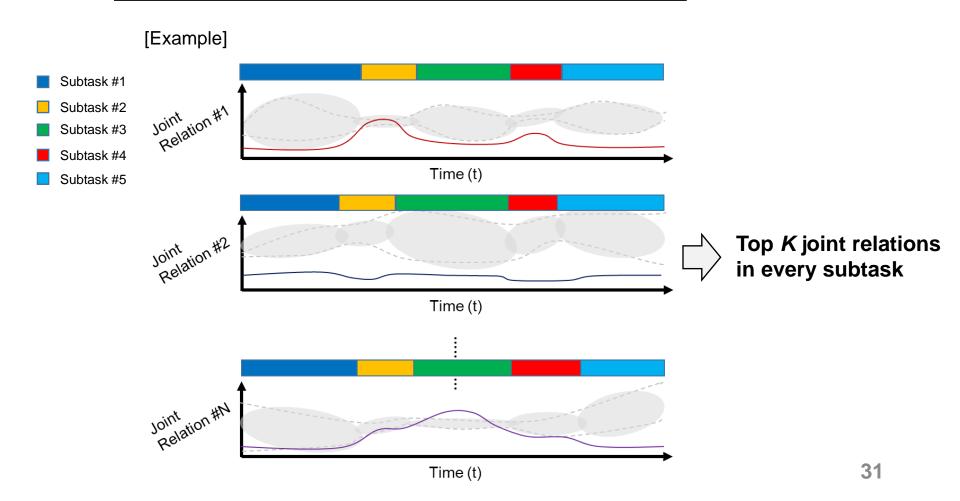


9~12 significant joint relations

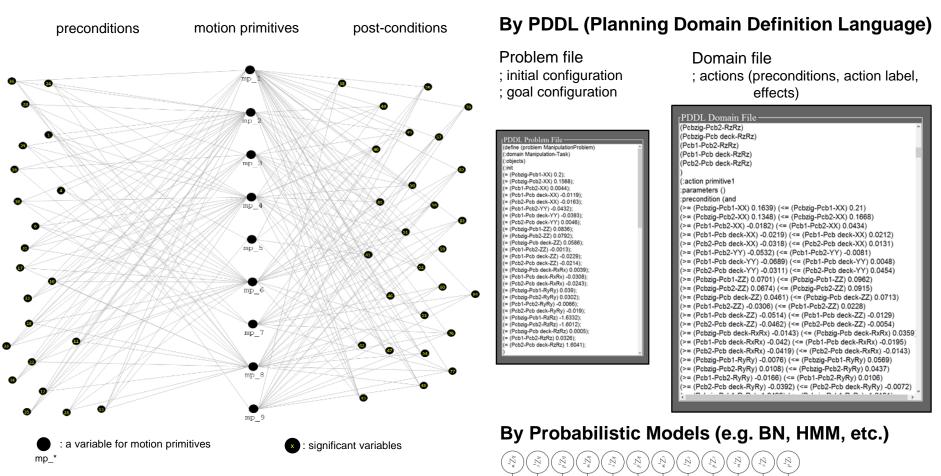
By Joint Motion Complexity and Joint Motion Significance Measures

1. Calculate the joint significance and joint complexity measures of all individual joint relations

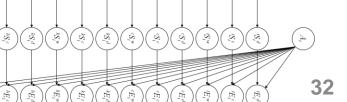
2. Segment a whole task into subtasks



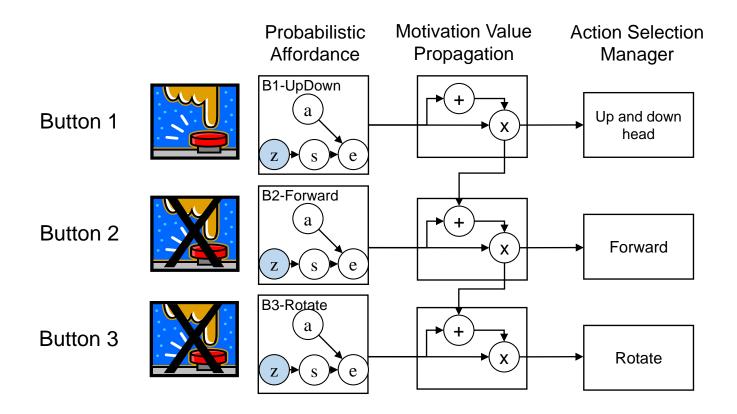
Representation of Joint Relations



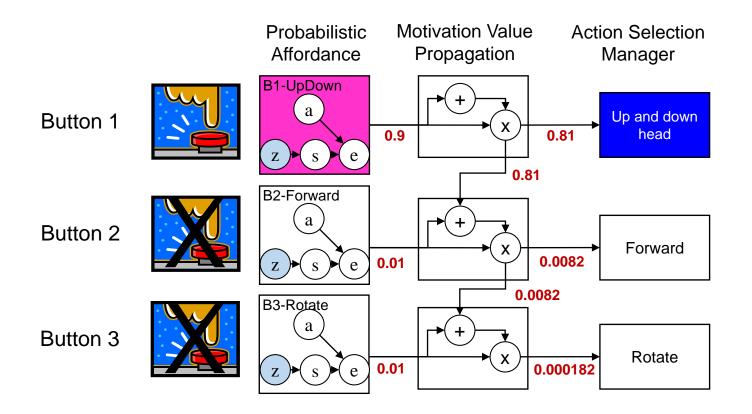
 S'_{H}



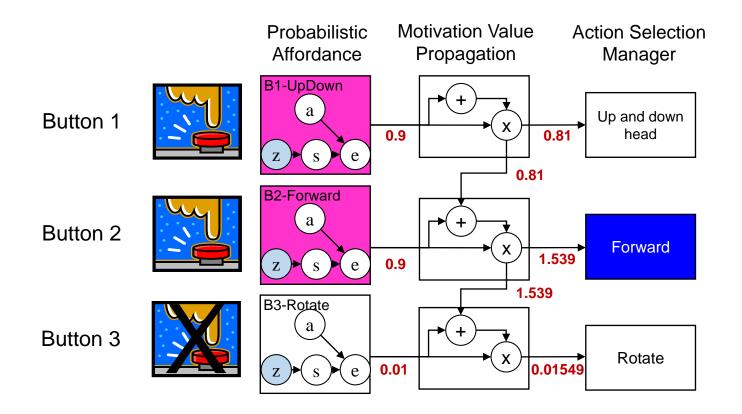
Action Selection for Goal-oriented Task-sequence Planning (1/4)



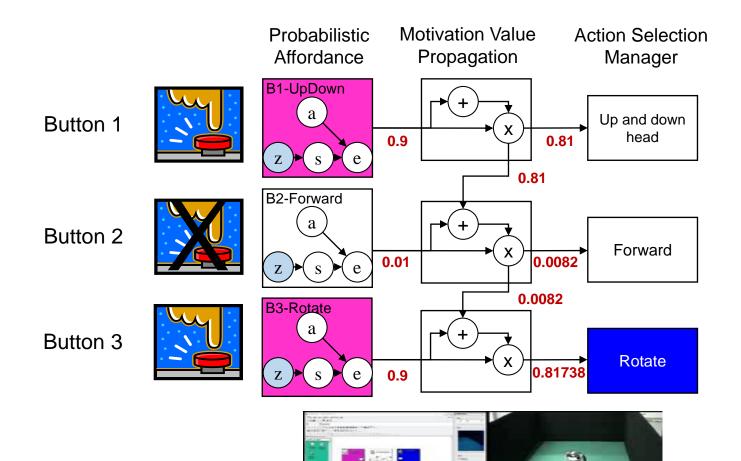
Action Selection for Goal-oriented Task-sequence Planning (2/4)



Action Selection for Goal-oriented Task-sequence Planning (3/4)



Action Selection for Goal-oriented Task-sequence Planning (4/4)



Tea-Service Task

Case I: a human snatches a teabag from the robot on the way to delivering it into a cup.

Case II: a human delivers a teabag into a cup while the robot is approaching the teabag for grasping it.

[00:00:18] x6

[00:00:14] x6

Case III: a human directly moves to a cup while the robot pours the water into the cup.

Human-Robot Interaction Game Task

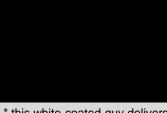
Human-Human Interaction

Green Wheel:

Blue Wheel:

Steel Bar:

Task-sequence planning with the other human



* this white-coated guy delivers a green wheel instead of the black-coated guy.

*this white-coated guy puts a green wheel back while the black-coated guy is approaching a blue wheel .

* this white-coated guy delivers a blue wheel instead of the black-coated guy.

Human-Robot Interaction

Task-sequence planning with human

* this guy delivers a green wheel instead of the robot.

*this guy puts a green wheel back while the robot is approaching a blue wheel .

* this guy delivers a blue wheel instead of the robot.

Human-Virtual Avatar Interaction : Social Interaction (1/5)

Training Data of Five Social Interaction:

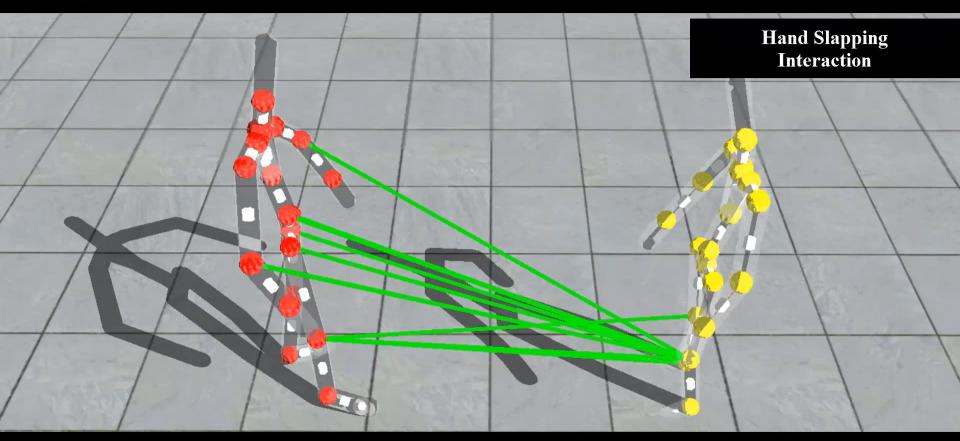
Hand Slapping, Hand Shaking, Shoulder Holding, Object Passing, and Target Kicking

Human-Virtual Avatar Interaction : Social Interaction (2/5)

Social Interaction Modeling Based on Joint Motion Significance

Human-Virtual Avatar Interaction : Social Interaction (3/5)

The Significant Features Selected as The Top Nine by The Joint Motion Significance

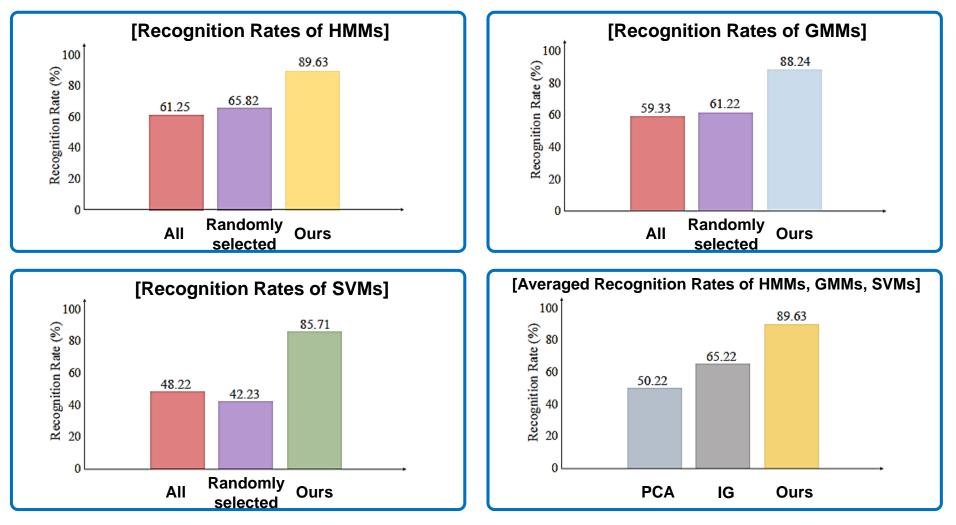


Significant Features Selected by Our Method

Human-Virtual Avatar Interaction : Social Interaction (4/5)

Evaluating Our Proposed Method

Human-Virtual Avatar Interaction : Social Interaction (5/5)



Thank You for Your Attention!

Ongoing Works

Collaborators

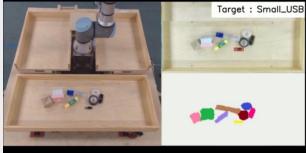
Motion Complexity & Deep Fitting

Sang Hyoung Lee Korea Institute of Industrial Technology

Nam Jun Cho Hanyang University

Deep Grasping

Young-Bin ParkByung Wan KimHanyang UniversityHanyang University



class label: glue - substitution

Video Speci 2.2x

Jong Soon Won Hanyang University

wrist camera images