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1. What motion will be more complex?




Do you think what motion is complex?
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Neural Complexity Measure (1/2)
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Complexity

Neural Complexity Measure (2/2)

Mondrian
Low Randomness High Randomness High Randomness
Simple ! Simple ! Complex !
Liquid : .
[Objective]
Calculating Motion Complexity
[Problem]

94_00\ = [Neural Complexity] —Intractable computation complexity
“v%};o‘i (ensemble average of all possible subsystems )
Wk * In time-varying motion trajectories
Ideal gas Crystal

Regularity



Motion Complexity

and Motion Significance

Example — ‘Pouring’ task

low

Quick pouring water into a bowl,
which has

Normally pouring water into a cup,
which has

Temporal entropy —

high
a/ W
Slow pouring water into a bottle,
which has

- Definitions -

Motion significance indicates the relative significance of each motion frame to accomplish the goal of a
task at every time index of human demonstrations. Motion complexity indicates how complex a whole set

of human demonstrations is to learn.

- How to measure -

Motion significance is measured by considering both spatial entropy and temporal entropy of a motion
frame, based on the analysis of Gaussian mixtures. Motion complexity is defined by measuring the
averaged amount of motion significance involved in an entire set of human demonstrations.
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ST-GMM based Mot

lon

Complexity/Motion Significance

Motion Significance

Three Motion Trajectories

~
Gaussian Mixture Model

.
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Do you think what motion is complex?

\

circle

line

1.4
1.2
1
0.8
0.6
0.4
0.2
, 1

line

Motion Complexity

circle  rectangle alphabets Random
stroke

m Motion Complexity

rectangle

Low complexity

alphabets

High complexity

Random stroke

Low complexity

»

order

disorder
9



What motion will be more complex

and significant?

Motion Complexity

0.118

0.430

Motion Significance
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2. What motion skill will be better learned first?
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What motion skill will be better learned
first in fitting task?

1

[
[
L

triangle rectangle irregular concave
hexagon

Objective: When human demonstrates how to fit a shape, the robot has to learn

fitting other two shapes by using pre-demonstrated motion as well
as RL.

Q1) What fitting motion skill is more complex among triangle-, rectangle-, and
hexagon-shaped fitting??
Q2) For effective learning and effective learning transfer,

Complex one needs to be learned first? Or simpler one needs to be learned
first?
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Overview of Learning Process

a Set of Human Demonstrations

®_

Clustering Reaction Force/Torque
(Calculating Motion Complexity)

2 S s

A Y

Modeling HMMs? ® Modeling DMPs?
(for recognition) (for control) ©

| -

[ Extracting

@

Performing
PoWER?3

IHMM(Hidden Markov Model): to model reaction force/torque according to the directions of inserting pegs
2DMP(Dynamic Movement Primitive): to model control signals

3PoWER(Policy Learning by Weighting Exploration with the Returns): to improve policy parameters through RL 13




DMP and POWER for RL

Representation of Motor Skills Representation of Motor Skills

Dynamic Movement Primitives Extension of Policy Learning by Weighting Exploration with
the Returns (POWER) to Optimize and Transfer Motor Skills

v=K(x, —x)+Dv+(x, —xp)C,

Input: initial policy parameters
(Here. a = Q"W (x) and T 1s the original length of initial policy )

X =V,
' Repeat
Sample: Using an initial target x, in Equation (5).
1 y; w;' (.T)S Generate rollout (x) using action (i.e. DMP) .
C {5) — <L 3 a = (0 + &) W(x,t) with exploration [:];;~N(O, cr[-ﬁ-:) as
Zf: 1 wi {:"{’) stochastic policy and collect all (t, x¢, s, Xr21, £6) T241)

fort ={1,2,..,T +1}.
_ a[fj if 1y = fpax

where T = argmax, r(t) and Xg = (), if .

I a , i1t < Tax

Reward Function for RL o | ¢ < Timax
Here. the value 1y, indicates the highest reward 1n all rollouts.

and the target a(T") is the action in the rollout of the value ryp.y.
_f o _f DT R Estimate: Use unbiased estimate of the value function
—a(|F —rl ()| + | = () + 17 =L (0)]) N :
r0)=exp | B — @)+ = 2O+ =7 0]  Q'at) =X rbpan D).
' ' —y(|P.—P.(1))) Reweight: rollouts. discard low-reward rollouts.
ooy Update policy using

sy =0+ (T0, 8,07 (x, 2, 0)/(T1-, Q7 (x, a, 1))

Until convergence Q. & 0,




Clustering Reaction F/T Signals
In Fitting Task

Triangle Rectangle Hexagon
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Motion Complexity in Fitting Tasks

Reaction
Force/Torque

Clustering

A 4

Calculating temporal
and spatial entropies
in every cluster

CC.

"_"_'_

X
{ "=

- " »

triangle rectangle irregular concave

hexagon

A 4

Calculating motion
complexity in every
cluster

A 4

Calculating motion
complexity of a task
by summing all
motion complexities

1.4
1.2

0.8
0.6
0.4
0.2

Motion Complexity

0.877
0.631

Triangle Rectangle

1.177

Hexagon

Triangle Rectangle mHexagon

* Motion complexity calculated using reaction force/torque signals
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Three Sequences of Task Transfer

[Simple-
to-
Complex]

[Complex- ||,

to-
Simple]

[Random] ||*

through RL (1/6)

triangle

—

___Unknown

" Bt

rectangle

Cb). ! .

e K
" Bt

rectangle

hexagon

Un known

| —

[~

hexagon

-\
T

triangle

rectangle
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Three Sequences of Task Transfer
through RL (2/6)

Known Unknown Unknown

. ) -
[Simple- |*+ *4ibs °~_,_x
o |- ) - 5] ) ¥ 2 S
s 368

- " "

[

. ® 9 = 9

Complex] ' ° X

triangle rectangle hexagon

# of iterations # of iterations
190 (A) 178 (B)

Thr [Simple-to-Complex] Order (i.e.. Triangle - Rectangle - Irregular Concave Hexagon)

By Motor Skills to Fit the Shape of Rectangle Transferred from the Motor Skills to Fit the Shape of Triangle

(A)

By Motor Skills to Fit the Shape of Hexagon Transferred from the Motor Skills to Fit the Shape of Rectangle

(B)
18




Three Sequences of Task Transfer

[Complex-
to-
Simple]

Ny gl |
" e e '-O e

hexagon

through RL (3/6)

Unknown

rectangle triangle

# of iterations # of iterations
136 (A) 101 (B)

Thr [Complex-to-Simple] Order (i.e.. Irregular Concave Hexagon - Rectangle - Triangle)

By Motor Skills to Fit the Shape of Rectangle Transferred from the Motor Skills to Fit the Shape of Hexagon

Iterations: 0
Return: 0

(A)

By Motor Skills to Fit the Shape of Triangle Transferred from the Motor Skills to Fit the Shape of Rectangle

(B)

Total
237

19



Three Sequences of Task Transfer
through RL (4/6)

Known Unknown Unknown

R — J e — [P —

[Random] :.h:‘!k. - ‘ l‘:—x .' & T;sfgl

triangle hexagon rectangle

# of iterations # of iterations
431 (A) 108 (B)

Thr [Random| Order (i.e.. Triangle - Irregular Concave Hexagon - Rectangle)

By Motor Skills to Fit the Shape of Hexagon Transferred from the Motor Skills to Fit the Shape of Triangle

(A)

By Motor Skills to Fit the Shape of Rectangle Transferred from the Motor Skills to Fit the Shape of Hexagon

(B)
20




Three Sequences of Task Transfer

[Simple-
to-
Complex]

[Complex-

to-
Simple]

[Random]

through RL (5/6)

triangle

190 I

136| * N0y

431

B Unknown )

rectangle

Cb). ! .

" Bt

rectangle

()

:

178

‘;f

101

)

108

)

Total

368

"l\ . |[Total
° e 237
triangle

Cb). '\ .

'I * [ | Total
8 [ 539

21
rectangle



Three Sequences of Task Transfer

through RL (6/6)

# of iterations

600
500
400
300
200
100

Simple-to-Complex = Complex-to-Simple = Random

When human can provide demonstrations:

Transfer task skills through the sequence of [Complex-to-Simple].

When human cannot provide demonstrations:

Transfer task skills through the sequence of [Simple-to-Complex].




RL Considering Task Execution Time

| n Fl ttl n g TaS k Policy Learning by Weighting

Exploration with the Returns

Input: initial policy parameters {1,
(Here, @ = 07W(x) and T is the original length of initial policy }

Repeat

Imitation Learning

Generate rollout (x) using action (i.e. DMP)

zation ere, the he highes
he target a(T") is the action in the rollout of the valte 7p,.y
R I Estimate: Use unl stimate of the value function
0", a,t) = X1 r(xg ap x50, 8)
Reweight: rollouts, discard low-reward rollouts.

Update policy using
Qery = O + (BT, £07(x, . 0))/(E, 07 (x . 1))

A 4
\ 4

Clustering Modeling

Until convergence Q4 & Dy

Human demonstrations for [Hole-search]
and ll)eg_insertion] i" fou r different direcﬁons Initial motor skills through imitation lcarning Its motor skills improved through RL
Of the [)eg-in-hOle taSI\ Execution Time: OOOOOOO‘ Execution Time: 0000000

Video Speed: 5x Video Speed: 1x




3. What and where to attend to learn from
demonstrations?

24



Where to Attend? What to Attend?

[00:00:45]
This ape should be able to find and learn attentive
and significant intentions(joint relations) in the human demonstration.

How to find this? and By what measure?




Two Paradigms of Existing PbD
Approaches

Motor Skill Task-Sequence
Learning Learning

Deep
Visuomotor
Policies

Relational
Learning

Task-sequence
Planning

Task

Dynamic Parameterized
Movement Models

Primitives

Concept

PoWER Learning Symbolic
ey Motor Planning
: Primitives
Guided

Search

» Trajectory Learning

* Motion Optimization/
Generalization

* Law-level Learning

» Sequential behaviors
» Serial order in behavior
* High-level Learning




Task-sequence Learning
. Learning Preconditions&Effects

Subtask
Time(t)
Subtask
Subtask
Subtask
* Precondition * Behavior/Action » Post-condition
» Activation condition ¢ Motion Primitive [ * Effect

Task-Sequence Learning/Planning



Conceptual Process
for Task-Sequence Planning in PbD

Task-Sequence Planning

A

Learning

Learning Motion Causalities | Preconditions & Effects
(Joint Relations)

A

Learning Motion Primitives

A

Extracting Motion Trajectories




Joint Motion Significance:
To Find Significant Joint Relations

IMUs

Temperature |

To find significant joint relations from tons of joint relations



How to Find Significant Joint Relations

When using training

(3x3x3x3x3)x2 =486 joint relations 19x19x6 = 2,166 joint relations
(3D positions and 3D rotations per object) (19 joints x 6dimensions per human)

[l

IS
!

9~12 significant joint relations

3~9 significant joint relations

30



EEECON

By Joint Motion Complexity and Joint

Motion Significance Measures

1. Calculate the joint significance and joint complexity measures 3. Select
of all individual joint relations |$ Top K
2. Segment a whole task into subtasks
[Example]
e = oo
Subtask #1
Subtask #2 A
o oK
Subtask #3 30\2:\9&\0(\ w
Subtask #4 « >
Subtask #5 Time (1)

Top K joint relations
in every subtask

Time (t)

>

A :
&
SOV \/\XA
?‘G
>

Time (t)

31



Representation of Joint Relations

preconditions

motion primitives

mE_

R

mp 2

™E

s

mp

3

4

mp_o

np_7

mp_&8

@ : 2 variable for motion primitives

mp_*

post-conditions

o
®
® 4
°
o
° )
®
3 o
@
°®
°
®
® 6 o
o©
®

° : significant variables

By PDDL (Planning Domain Definition Language)

Problem file

; initial configuration
; goal configuration

PDDL Problem File
{(define (problem ManipulationProblem)
{-domain Manipulation-Task)

(= (Pebzig-Peb1-XX) 0.2);
(= (Pebaig-Peb2-XX) 0.1588);

(= (Pebaig-Pch2-2Z) 0.0762)c

(= (Pebaig-Peh deck-ZZ) 0.0588);
(= (Peb1-Peb2-2Z) -0.0013);

(= (Peb1-Peb deck-ZZ) -0.0228);
(= (Peb2-Peb deck-ZZ) 0.0214);
(= (Pebaig-Peb deck-RuRx) 0.0039)
(= (Peb1-Peb deck-RxRx) -0.0308);
(= (Peb2-Peb deck-RuRx) -0.0243);
(= (Pebaig-Peb1-RyRy) 0.039);

(= (Pcbaig-Pcb2-RyRy) 0.0302);

(= (Pebi-Peb2-RyRy) -0,0068);

(= (Peb2-Peb deck-RyRy) -0.019);
(= (Pebzig-Peb1-RaRz) -1.6332);

-Peb2-RzRz) 0.0328);
-Feb deck-RzRz) 1.6041);

Domain file
; actions (preconditions, action label,
effects)

PDDL Domain File

(Pcbzig-Pcb2-RzRz)

(Pebzig-Pcb deck-RzRz)

(Peb1-Peb2-RzRz)

{Pcb1-Pcb deck-RzRz)

{Pcb2-Pcb deck-RzRz)

)

{:action primitive1

:parameters ()

:precondition (and

(>= (Pcbzig-Peb1-XX) 0.1638) (<= (Pcbzig-Peb1-XX) 0.21)

(>= (Pebzig-Peb2-XX) 0.1348) (<= (Pchzig-Pcb2-XX) 0.1668)

(>= (Peb1-Peb2-XX) -0.0182) (<= (Pcb1-Pcb2-XX) 0.0434)

(>= (Peb1-Pcb deck-XX) -0.0219) (<= (Pcb1-Peb deck-XX) 0.0212)
(== (Pcb2-Pcb deck-XX) -0.0318) (<= (Pcb2-Pcb deck-XX) 0.0131)
(== (Peb1-Peb2-YY) -0.0532) (<= (Pcb1-Pcb2-YY) -0.0081)

(== (Pcb1-Peb deck-YY) -0.0689) (<= (Pcb1-Pcb deck-Y'Y) 0.0048)
(== (Pcb2-Peb deck-YY) -0.0311) (<= (Pcb2-Pcb deck-YY) 0.0454)
(== (Pcbzig-Peb1-ZZ) 0.0701) (<= (Pcbzig-Peb1-ZZ) 0.0962)

(== (Pcbzig-Peb2-ZZ) 0.0674) (<= (Pcbzig-Peb2-ZZ) 0.0915)

(== (Pcbzig-Peb deck-ZZ) 0.0461) (== (Pcbzig-Peb deck-ZZ) 0.0713)
(== (Peb1-Peb2-ZZ) -0.0306) (== (Pcb1-Peb2-ZZ) 0.0228)

(== (Peb1-Peb deck-ZZ) -0.0514) (== (Pcb1-Peb deck-ZZ) -0.0129)
(>= (Peb2-Peb deck-2Z) -0.0462) (<= (Peb2-Peb deck-ZZ) -0.0054)
(== (Pcbzig-Pcb deck-RxRx) -0.0143) (== (Pcbzig-Pcb deck-RxRx) 0.0359
(>= (Peb1-Peb deck-RxRx) -0.042) (<= (Pcb1-Peb deck-RxRx) -0.0195)
(== (Peb2-Pcb deck-RxRx) -0.0419) (== (Pcb2-Pcb deck-RxRx) -0.0143)
(>= (Pebzig-Peb1-RyRy) -0.0076) (<= (Pcbzig-Peb1-RyRy) 0.0569)

(= (Pebzig-Pcb2-RyRy) 0.0108) (<= (Pebzig-Peb2-RyRy) 0.0437)

(== (Peb1-Pcb2-RyRy) -0.0166) (<= (Pcb1-Pcb2-RyRy) 0.0106)

(>= (Pcb2-Peb deck-RyRy) -0.0392) (<= (Pcb2-Peb deck-RyRy) -0.0072) |

< »

By Probabilistic Models (e.g. BN, HMM, etc.)

—

L
=
= |

==




Action Selection for Goal-oriented
Task-sequence Planning (1/4)

Probabilistic Motivation Value Action Selection

Affordance Propagation Manager
B1-UpDown
a | O BN
- Up and down
Button 1 (%) > e
Z s p e
B2-Forward
a |—>( + )7
Button 2 Forward
> X >
V4 s p e N
Button 3 ’
e \XJ Rotate

33



Action Selection for Goal-oriented

Task-sequence Planning (2/4)

Probabilistic Motivation Value Action Selection
Affordance Propagation Manager
Button 1 e | =; ) N Up and down
09 X1 081 head
0.81
B2-Forward
a +
Button 2 |'<> ¥
> X/ > Forward
7 S e ] 0.01 0.0082
0.0082
+
| >; ) > Rotate
e ] 0.01 X 0.000182

34



Action Selection for Goal-oriented

Task-sequence Planning (3/4)

Button 1

Button 2

Probabilistic
Affordance

. 0.9
0.9

Motivation Value Action Selection
Propagation Manager
| : J A\ Up and down
"X os1 head
0.81

»

B3-Rotate

1.539

.539

0.01

0.01549

Rotate
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Action Selection for Goal-oriented
Task-sequence Planning (4/4)

Probabilistic  Motivation Value Action Selection
Affordance Propagation Manager

Button 1 | =; \ .| Up and down
0.9 X/ 0.81 head
0.81

Button 2

> Forward
0.0082

.0082

> Rotate
0.81738

36



Tea-Service Task

Case II: a human delivers a teabag into a cup
while the robot is approaching the teabag
for grasping it.

Case I: a human snatches a teabag from the robot
on the way to delivering it into a cup.

{..,. ! l“

[00:00:18] x6 [00:00:14] x6

Case llI: a human directly moves to a
cup while the robot pours
the water into the cup.

[00:00:11] X6 37



Human-Robot Interaction Game Task

e

. Green Wheel: ‘ Blue Wheel:
Human-Human Interaction

s \

Task-sequence planning with the other human

without human interactio

=

* this white-coated guy delivers *this white-coated guy puts a green * this white-coated guy delivers
a green wheel instead of the wheel back while the black-coated a blue wheel instead of the
black-coated guy. guy is approaching a blue wheel . black-coated guy.

s N N

without human interaction

* this guy delivers a green wheel *this guy puts a green wheel back * this guy delivers a blue wheel
instead of the robot. while the robot is approaching a instead of the robot.
blue wheel .




Human-Virtual Avatar Interaction

- Socilal Interaction (1/5

Training Data of Five Social Interaction:

Hand Slapping, Hand Shaking, Shoulder Holding,
Object Passing, and Target Kicking




Human-Virtual Avatar Interaction

. Social Interaction (2/5)

Social Interaction Modeling
Based on Joint Motion Significance




Human-Virtual Avatar Interaction
. Socilal Interaction (3/5)

The Significant Features Selected as The Top Nine by The Joint Motion Significance

Hand Slapping
Interaction

Significant Features Selected by Our Method




Human-Virtual Avatar Interaction

. Social Interaction (4/5)

Evaluating Our Proposed Method




Human-Virtual Avatar Interaction

. Soclal Interaction (5/5)

[Recognition Rates of HMMs]

[Recognition Rates of GMMs]

Randomly ours

selected

100
1o 89.63 o
= =
S &
< 80 = 80
2 5
= 65.82 = 61.22
,:;: 60 6125 5 50 5933
2 =
5 40 & 40
a g
L7} [
e 20 20
0 0
Al Randomly (& Al Randomly &,
selected selected
[Recognition Rates of SVMs] [Averaged Recognition Rates of HMMs, GMMs, SVMs]
100 100
= 85.71 @ 89.63
E: 20 . RO
ks E 65.22
60 =60
5 48.22 g 50,22
a 2 4223 = 0
= 20 = 20
0 0

PCA

IG
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